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Abstract. In recent times some interesting field-theoretical descriptions of the statistical
mechanics of entangling polymers have been proposed by various authors. In these approaches,
a single test polymer fluctuating in a background of static polymers or in a lattice of obstacles
is considered. The extension to the case in which the configurations of two or more polymers
become non-static is not straightforward unless their trajectories are severely constrained. In this
paper we present another approach, based on Chern–Simons field theory, which is able to describe
the topological entanglements of two fluctuating polymers in terms of gauge fields and second
quantized replica fields.

1. Introduction

In recent times, some interesting field-theoretical descriptions of the statistical mechanics of
polymer rings subjected to topological constraints have been proposed by various authors [1–9].
In all of these approaches, which are based on the pioneering works [10, 11], the inclusion of
higher-order link invariants [12–14] is as yet an unsolved problem. On the other hand, these
invariants are necessary in order to specify, in a unique way, the distinct topological states
of the polymers. The main difficulty in the application of higher-order link invariants is that
they cannot be expressed easily in terms of the variables which characterize the polymer, i.e.
its trajectory in the three-dimensional (3D) space and its contour length. For this reason, in
all analytical methods used to study entangling polymers the simplest topological invariant
is considered, namely the Gauss linking number [5]. Even in this approximation, a rigorous
treatment of the 3D entanglement problem is mathematically difficult. Basically, only the
case of a single polymer fluctuating in a background of static polymers or fixed obstacles has
been investigated until now. Alternatively, one chooses a test polymer and averages out in
the partition sum the configurations of all the remaining chains. This is done by identifying
the relevant collective variables for the problem and treating them as distributed in a Gaussian
fashion [3, 4].

As has been suggested recently, for instance, in [5, 9], a possible way out of the above
difficulties is the introduction of Chern–Simons (CS) field theories [15] in the treatment of
polymer entanglement. Indeed, theories of this kind have already been applied successfully
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in related problems, such as, for instance, the self-entanglements of DNA molecules [16]. In
this case, the geometric features of the system are captured by the so-called writhe, a non-
topological number which can be reproduced in terms of CS amplitudes. However, when
one considers the statistical mechanics of polymers, the writhe is replaced by the Gauss
linking invariant and the situation becomes more complicated. As a matter of fact, in order to
express this topological invariant by means of CS amplitudes, one has to remove the spurious
contributions coming from the self-linking of the trajectories described by the polymers in the
space. In pure CS field theories, defined on a simply connected manifold, it is possible to
achieve this goal by introducing the so-calledframingof the loops [13]. Unfortunately, this
kind of regularization depends on the form of the trajectories. Thus, it introduces in the action
of the polymers additional terms, which make the integration over their configurations very
difficult.

In this paper, we treat the statistical mechanics of two fluctuating polymers subjected
to topological entanglements. This is a physically interesting approximation of a system
of polymers in which a particular molecule is identified and the rest of them are replaced
by an ‘effective’ molecule [6]. To reproduce the topological term necessary to specify the
topological states, the strategy is adopted to couple the polymers to two Abelian CS fields.
All the undesired terms coming from the self-linking of the trajectories are eliminated without
the introduction offramingby simply choosing the coupling constants in a suitable way. Of
course, our procedure does not replace theframing, but it is sufficient to cancel the self-linking
ambiguities at least for the CS amplitudes which are relevant in our context. As will be shown,
the addition of CS fields allows the complete decoupling of the actions of the two polymers,
so that it is possible to treat each of them separately with the powerful methods developed
in [6, 7]. As an outcome, we are able to formulate the problem of two fluctuating polymers
subjected to topological constraints in terms of a CS gauge field theory withn components at
the limit in whichn goes to zero. With respect to the other analytical approaches based on
Edwards’ work [10], the external magnetic fields generated by the background polymers are
replaced in our case by quantum CS fields. In this way, the somewhat artificial dependence on
the conformations of the static polymers disappears from the partition function of the system.
Moreover, let us stress that the CS fields enter in our formalism not just as auxiliary fields, but
play an important physical role, since they propagate the forces which constrain the system in
a given topological state.

The material presented in this paper is divided as follows. In section 2 we briefly review
the field-theoretical approach developed in [6, 7] in the case of a test polymer entangling
with another polymer of fixed conformation. In section 3 this approach will be extended
to the situation in which both polymers are dynamical. In particular, the configurational
probabilities derived in [7] are generalized to the case of two fluctuating polymers. Finally,
in the conclusions, some possible generalizations and applications of our treatment will be
discussed.

2. Statistical-mechanical theory of polymer entanglement

Let P be a polymer (see, e.g., [2, 9] for a general introduction to the physics of polymers)
represented as a long chain ofN + 1 segmentsEri+1 − Eri for i = 0, . . . , N . Each segment
has a fundamental step lengtha, which is assumed to be very small with respect to the total
length of the polymer. Moreover, the junction between adjacent segments is such that they can
rotate freely in all directions. In the limit of large values ofN , the ensemble ofM polymers
P1, . . . , PM of this kind can be regarded as the ensemble ofM particles subjected to a self-
avoiding random walk. The whole configuration of a polymerP is thus entirely specified by
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the trajectoryr(s) of a particle in three-dimensional (3D) space, with 06 s 6 L. L is the
contour length of the polymer and plays the role of time. We assume that the molecules of
the polymer repel each other with a self-avoiding potentialv(r − r′). The potentialv must
be strong enough to avoid unwanted intersections of the trajectoryr(s) with itself. In the
following, the case of two polymersP1 andP2 of contour lengthL1 andL2, respectively, will
be investigated. We suppose that they describe the curvesC1 andC2 in 3D space.

In order to take into account the entanglement ofP1 aroundP2, we introduce the Gauss
linking invariantχ(C1, C2),

χ(C1, C2) ≡ 1

4π

∮
C1

∮
C2

dr1× dr2 ·
r1− r2

|r1− r2|3 . (1)

For the moment, we confine ourselves to the situation in which one single test polymer, for
instanceP1, is entangling with a polymerP2 of static configurationr2(s2), with 06 s2 6 L2.
LetGm(r1, L1; r0,1, 0) be the configurational probability to findP1 with one end at a pointr1

starting the other end atr0,1 and penetrating a numberm of times a surfaceS2 whose boundary
is given byP2. Gm(r1, L1; r0,1, 0) can be expressed in terms of path integrals as the Green
function of a particle subjected to a self-avoiding random walk [7]

Gm(r1, L1; r0,1, 0) =
∫ r1=r1(L1)

r0,1=r1(0)
Dr1(s1) δ(χ(C1, C2)−m)

× exp

{
−
∫ L1

0
ds1L0 − 1

2a2

∫ L1

0
ds1

∫ L1

0
ds ′1 v(r(s1)− r(s ′1))

}
(2)

where

L0 = 3

2a
ṙ2

1. (3)

We remark here that the Gauss linking invariant takes integer values only if the polymers form
closed rings. This case can be recovered easily, by requiring thatr1 = r0,1 in the path integral
(2). Due to the importance of open polymer chains in understanding the nature of topological
forces, however, we will consider in the following also the more general situation in which
r1 6= r0,1.

To simplify the computations, it is convenient to work with the chemical potential
λ conjugated to the topological chargem. Thus, we take the Fourier transform of
Gm(r1, L1; r0,1, 0) with respect tom,

Gm(r1, L1; r0,1, 0) =
∫

dλ

2π
e−iλmGλ(r1, L1; r0,1, 0). (4)

Comparing with equation (2), the Green functionGλ(r1, L1; r0,1, 0) is given by

Gλ(r1, L1; r0,1, 0) =
∫ r1

r0,1

Dr1(s1) exp

{
−
∫ L1

0
ds1L0

}
× exp

{
− 1

2a2

∫ L1

0
ds1

∫ L1

0
ds ′1 v(r(s1)− r(s ′1)) + iλχ(C1, C2)

}
. (5)

Following [10], the above configurational probability can be converted to that of a quantum
particle diffusing in a magnetic field produced by the polymerP2. To this end, we define at
this point the current density

j(r2) =
∮
C2

ṙ2(s2) δ(r − r2(s2)). (6)
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This current generates a magnetic field

B(r1) = 1

4π

∮
C2

dr2(s2)× r1− r2(s2)

|r1− r2(s2)|3 (7)

which satisfies the relations∇ · B = 0 and∇ × B = j2. In terms ofB, the Gauss linking
invariant (1) becomes

χ(C1, C2) =
∮
C1

dr1(s1) ·B(r1(s1)). (8)

Let us note that the path integral (5) does not describe a Markoffian random walk due to
the presence of the non-local self-avoiding term. To reduce it to a Markoffian random walk,
we introduce Gaussian scalar fieldsφ(r) with propagator

〈φ(r) φ(r′)〉 = 1

a2
v(r − r′). (9)

Thus, we have from equation (5)

Gλ(r1, L1; r0,1, 0) = 〈Gλ(r1, L1; r0,1, 0|φ,B)〉φ. (10)

In the above equation the symbol〈 〉φ denotes the average over the auxiliary fieldsφ and

Gλ(r1, L1; r0,1, 0|φ,B) =
∫ r1

r0,1

Dr1(s1) exp

{
−
∫ L1

0
ds1(Lφ + iṙ1(s1) · λB(r1(s1)))

}
(11)

where we have put

Lφ = L0 + iφ(r1(s1)). (12)

The Green functionGλ(r1, L1; r0,1, 0|φ,B) is formally that of a particle diffusing under the
magnetic fieldB, defined in equation (7), and an imaginary electric potential iφ. Thus, it can
be shown to satisfy the Schrödinger-like equation{
∂

∂L1
− a

6
(∇ + iλB)2 + iφ

}
Gλ(r1, L1; r0,1, 0|φ,B) = δ(L1) δ(r1− r0,1). (13)

The Laplace transform of the above equation with respect to the contour lengthL1 is{
z1− 1

6a(∇ + iλB)2 + iφ
}
Gλ(r1, r0,1; z1|φ,B) = δ(r1− r0,1) (14)

where

Gλ(r1, r0,1; z1|φ,B) =
∫ ∞

0
dL1 e−z1L1 Gλ(r1, L1; r0,1, 0|φ,B). (15)

The variablez1 plays the role of the chemical potential conjugate to the contour lengthL1.
From now on, we setD = ∇ + iλB. Starting from equation (14) and integrating over the
auxiliary fieldsφ by means of the replica method, one can expressGλ(r1, r0,1; z1) in terms of
second quantized fields. Skipping the details of the derivation, which can be found in [7], we
just state the result obtained in the case of a self-avoiding potential of the kindv(r) = a2v0 δ(r),

Gλ(r1, r0,1; z1) = lim
n→0

∫ n∏
ω=1

Dψ∗ω Dψω ψ∗ω(r1) ψ
ω(r0,1) e−F [9] . (16)

In the above equation the fieldsψ∗ω, ψω, ω = 1, . . . , n, are complex replica fields and
9 = (ψ1, . . . , ψn). Moreover,ω is an arbitrarily chosen integer in the range 1, . . . , n and the
polymer free energyF [9] is given by

F [9] =
∫

d3r
{

1
6a‖D9‖2 + z1‖9‖2 + v0‖9‖4

}
(17)
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where‖D9‖2 =∑ω(Dψ
ω)†Dψω and‖9‖2 =∑ω |ψω|2. The generalization of the above

formulae to an arbitrary numberM of static polymersP2, . . . , PM is straightforward, but
not the inclusion of their fluctuations. Already, in the case of two polymers, the analysis of
the Schr̈odinger equation (14) becomes complicated due to the presence of the non-trivial
interactions among the polymers introduced by the Gauss linking invariant (1). This makes
the derivation of the Green functionGλ(r1, L1; r0,1, 0|φ,B) in terms of second quantized
fields extremely difficult, apart from a few cases in which the trajectories of the polymers are
strongly constrained. On the other hand, without including the fluctuations of all polymers,
there is always the difficulty of determining those configurations of the static polymers which
are physically relevant. Indeed, we see from equations (16) and (17) that the free energyF [9]
of the test polymerP1 depends on the trajectoryr2(s) through the external magnetic potential
B contained in the covariant derivativeD. As we will see in the next section, the introduction
of auxiliary Chern–Simons fields will remove all these problems.

3. Topological entanglement of polymers via Chern–Simons fields

We study in this section the fluctuations of two polymersP1 andP2 subjected to topological
constraints. In analogy with the previous section, we consider the configurational probability
Gm({r}, {L}; {r0}, 0) of finding the polymerP1 with ends inr1 andr0,1 and the polymerP2

with ends inr2 andr0,2. Moreover, we require thatP1 winds up aroundP2 a numberm times.
Here, we have put{r} = r1, r2, {L} = L1, L2, etc. From now on, the indicesτ, τ ′, . . . = 1, 2
will be used to distinguish between the two different polymers. The self-avoiding potential
of the previous section must be extended in the present case in order to take into account the
reciprocal repulsions among the molecules of the two different polymers. Thus we choose a
two-body potential of the kind

vττ ′(rτ (sτ )− rτ ′(s ′τ ′)) = v0
ττ ′v(rτ (sτ )− rτ ′(s ′τ ′)) (18)

where v0
ττ ′ is a symmetric 2× 2 matrix andv(r) is strongly repulsive. As seen in the

previous section, the presence of self-avoiding potentials leads to random walks which are
not Markoffian. To solve this problem, we introduce auxiliary scalar fields with Gaussian
action and propagator

〈φτ (x)φτ ′(y)〉 = 1

a2
v0
ττ ′v(x− y). (19)

In the future we will make use of the following formula:∫ 2∏
τ=1

Dφτ exp

{
− 1

2a
2
∫

d3xd3y φτ (x)M
ττ ′(x,y) φτ ′(y)− i

2∑
τ=1

∫
d3x Jτ (x) φτ (x)

}
= exp

{
− 1

2a2

∫ Lτ

0

∫ Lτ ′

0
dsτ ds ′τ ′vττ ′(rτ (sτ )− rτ ′(s ′τ ′))

}
(20)

whereMττ ′(x,y) is the inverse of the matrixvττ ′(x− y) and

Jτ (x) =
∫ Lτ

0
dsτ δ

(3)(x− rτ (sτ )). (21)

Let us now rewrite the topological contribution in the path integral (5) in a more suitable way
by means of auxiliary CS fields. With the introduction of these fields, our treatment of the
polymer entanglement problem departs from that of section 2 and from [7].

We will consider for our purposes Abelian CS field theories of action

ACS(A, κ) = κ

8π

∫
d3x εµνρAµ∂νAρ (22)
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with µ, ν, ρ = 1, 2, 3. κ is a real coupling constant andεµνρ is the completely antisymmetric
tensor in 3D. The above action can also be written in another useful form:

ACS(A, κ) = κ

8π

∫
d3rA · (∇×A) (23)

wherer = (x1, x2, x3). To quantize the CS theory we choose the Feynman gauge with
propagator

Gµν(x,y) = i

κ
εµνρ

(x − y)ρ
|x− y|3 . (24)

The observables of the theory are gauge-invariant operators built out of the basic fieldsAµ. A
complete set is given by the holonomies around closed curves

W(C, γ ) ≡ exp

{
−iγ

∮
C

Aµ dxµ
}
. (25)

The vacuum expectation value of two of these observablesW(C1, γ1) andW(C2, γ2) is

〈W(C1, γ1)W(C2, γ2)〉A
= exp

{
−i

(
2π

κ

)[
γ 2

1χ(C1, C1) + γ 2
2χ(C2, C2) + 2γ1γ2χ(C1, C2)

]}
(26)

whereχ(Cτ , Cτ ), τ = 1, 2 is the so-called self-linking number of the loopCτ .
To reproduce the term of equation (5) containing the Gauss invariantχ , we need two

Chern–Simons fieldsaµ andbµ with actionsACS(a, κ) andACS(b,−κ), respectively. Using
equation (26) and setting, for instance,

γ1 = κ

4π
γ2 = λ

4
(27)

one sees, in fact, that

〈W(C1, γ1)W(C2, γ2)〉a 〈W(C1,−γ1)W(C2, γ2)〉b = exp{−iλχ(C1, C2))}. (28)

The right-hand side of the above equation is exactly the contribution due to the topological
entanglements of the polymers appearing in equation (5). We are now ready to write the
expression of the Green functionGλ({r}, {L}; {r0}, 0) for two entangling polymers. First of
all, let us put

Gλ({r}, {L}; {r0}, 0) = 〈Gλ({r}, {L}; {r0}, 0|{φ}, {A})〉{φ},a,b (29)

where〈 〉{φ},a,b denotes the average with respect to the fieldsφτ ,a, b and

Gλ({r}, {L}; {r0}, 0|{φ}, {A}) =
2∏
τ=1

∫ rτ

r0,τ

Drτ (sτ ) exp

{
−
∫ Lτ

0
Lφτ

}
× exp

{
−iγτ

∫ Lτ

0
Aτ (rτ (sτ )) · drτ (sτ )

}
. (30)

The parametersγτ appearing in the above equation are defined as in equation (27) and the
fieldsAτ are given by the relation

Aτ = a + (−1)τb τ = 1, 2. (31)

To show that equation (29) provides the desired generalization of equation (2) to the case
of two fluctuating polymers, we exploit formulae (20) and (28) in order to perform the two
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independent integrations over the fieldsφτ ,a andb. After some calculations one finds that

Gλ({r}, {L}; {r0}, 0) =
∫ r1

r0,1

Dr1(s1)

∫ r2

r0,2

Dr2(s2) (32)

× exp

{
−
∫ L1

0
ds1L0(ṙ1(s1))−

∫ L2

0
ds2L0(ṙ2(s2))

}
× exp

{
− 1

2a2

2∑
τ,τ ′=1

∫ Lτ

0
dsτ

∫ Lτ ′

0
dsτ ′ vττ ′(rτ (sτ )− rτ ′(sτ ′))− iλχ(C1, C2)

}
.

(33)

By inverse Fourier transformation inλ as in equation (4), we obtain from equation (33):

Gm({r}, {L}; {r0}, 0) =
∫ r1

r0,1

Dr1(s1)

∫ r2

r0,2

Dr2(s2)

× exp

{
−
∫ L1

0
ds1L0(ṙ1(s1))−

∫ L2

0
ds2L0(ṙ2(s2))

}
× exp

{
− 1

2a2

2∑
τ,τ ′=1

∫ Lτ

0
dsτ

∫ Lτ ′

0
ds ′τ ′vττ ′(rτ (sτ )− rτ ′(s ′τ ′))

}
×δ(χ(C1, C2)−m). (34)

If we ignore the fluctuations ofP2 and the reciprocal repulsion among the molecules ofP1

andP2, which was not taken into account in section 2, equation (34) coincides exactly with
equation (2) as desired. With respect to equation (34), the formulation of the polymer problem
given in equation (29) in terms of Chern–Simons fields presents the advantage that now each
polymerP1 andP2 undergoes an independent random walk. Their mutual interactions, that in
equations (2) and (34) occur through the Gauss linking invariantχ(C1, C2), are now mediated
by Chern–Simons fields, as it is possible to see from equations (29) and (30). At this point,
it becomes possible to express the Green functionGλ({r}, {L}, {r0}, 0) in terms of second
quantized fields using the methods developed in [7]. To this end, we split the Green function
Gλ({r}, {L}, {r0}, 0|{φ}, {A}) of equation (30) as follows:

Gλ({r}, {L}; {r0}, 0|{φ}, {A}) = Gλ(r1, L1; r0,1, 0|φ1,A
1)Gλ(r2, L2; r0,2, 0|φ2,A

2) (35)

where, forτ = 1, 2:

Gλ(rτ , Lτ ; r0τ , 0|φτ ,Aτ ) =
∫ rτ

r0,τ

Drτ (sτ ) exp

{
−
∫ Lτ

0

[
Lφτ − iγτA

τ · drτ (sτ )
]}
. (36)

Each Green functionGλ(rτ , Lτ ; r0,τ , 0|φτ ,Aτ ), τ = 1, 2, is the Green function of a
particle diffusing under the vector potentialAτ and the imaginary electromagnetic fieldφτ .
As a consequence, it can be written as the solution of a Schrödinger-like equation such as
(13). In analogy with the previous section, it is convenient to introduce chemical potentialszτ
conjugated toLτ . Thus, we consider the Laplace transformed Green function

Gλ({r}, {r0}; {z}|{φ}, {A}) =
∫ ∞

0

∫ ∞
0

dL1 dL2 e−(z1L1+z2L2)Gλ({r}, {L}; {r0}, 0|φτ ,Aτ ).

(37)

From equations (35) and (36) we have

Gλ({r}, {r0}; {z}|{φ}, {A}) = Gλ(r1, r0,1; z1|φ1,A
1)Gλ(r2, r0,2; z2|φ2,A

2) (38)
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where the functionsGλ(rτ , r0,τ ; zτ |φτ ,Aτ ) have already been defined in equation (15). For
each value ofτ = 1, 2, they explicitly satisfy equation (14), which is shown again here, for
convenience: {

zτ − 1
6aD

2
τ + iφτ

}
Gλ(rτ , r0,τ ; zτ |φτ ,Aτ ) = δ(rτ − r0,τ ). (39)

The covariant derivativesDτ are defined as follows:Dτ = ∇ + iγτAτ . The solution of
equation (39) in terms of complex scalar fieldsψ∗τ , ψτ is

Gλ(rτ , r0,τ ; zτ |φτ ,Aτ ) = 1

Zτ

∫
Dψ∗τ Dψτ ψ∗τ (rτ ) ψτ (r0,τ ) e−F [ψτ ] (40)

where, setting|Dτψτ |2 = (Dτψτ )
† ·Dτψτ , the free energyF [ψτ ] is given by

F [ψτ ] =
∫

d3r
[

1
6a|Dτψτ |2 + (zτ + iφτ )|ψτ |2

]
. (41)

Finally, the partition functionZτ is

Zτ =
∫
Dψ∗τ Dψτ e−F [ψτ ] . (42)

As we see from equation (41),F [ψ ] is nothing but the Gintzburg–Landau free energy of a
superconductor in a fluctuating magnetic field. We are now ready to perform the average over
the auxiliary fieldsφτ in the Green function (38). This integration is, however, highly non-
trivial. As a matter of fact, using equation (40) to express the original Green function (38) in
terms of second quantized fields, one immediately realizes that the integrand is not Gaussian,
due to the presence of the factorsZ−1

τ . To solve this problem, we exploit the replica method.
Thus we introduce 2n replica fieldsψ∗ωτ , ψ

ω
τ , with τ = 1, 2 andω = 1, . . . , n. In terms of

these fields, the Green function (38) can be written as follows:

Gλ({r}, {r0}; {z}|{φ}, {A}) = lim
n→0

2∏
τ=1

[ ∫ n∏
ω=1

Dψ∗ωτ Dψω
τ ψ

∗ω
τ (rτ ) ψ

ω
τ (r0,τ ) e−F [ψωτ ]

]
(43)

whereω is an arbitrary integer chosen in the range 16 ω 6 n. According to the replica method,
we will also assume that the limit forn going to zero commutes with the integrations in the
fieldsAτ andφτ . In this way, the integral over the auxiliary fieldsφτ becomes Gaussian and
can be performed easily. Supposing in analogy with the previous section that the self-avoiding
potential is of the kind

vττ ′(r) = v0
ττ ′δ(r) (44)

we have after some calculations that

〈Gλ({r}, {r0}; {z}|{φ}, {A})〉{φ},a,b

= lim
n→0

∫
DaDb

2∏
τ=1

{[ n∏
ω=1

Dψ∗ωτ Dψω
τ

]
ψ∗ωτ (rτ )ψ

ω
τ (r0,τ )

}
exp{−A(a, b, {9})}

(45)

where, using the same notation of equations (16) and (17), the actionA(a, b, {9}) is

A(a, b, {9}) = iACS(a, κ) + iACS(b,−κ)

+
2∑
τ=1

[
1
6a‖Dτ9τ‖2 + zτ‖9τ‖2

]
+

2∑
τ,τ ′=1

‖9τ‖2v0
ττ ′ ‖9τ ′ ‖2. (46)

Equation (45) is the generalization of equation (16), which describes in terms of fields the
configurational probability for two entangling polymersPτ , τ = 1, 2, to have their ends in
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rτ andr0,τ , respectively. Apparently, with respect to equation (29), the Green function (45)
contains an extra parameter provided by the CS coupling constantκ. In fact,κ is not present in
the first quantized formalism due to its cancellation occurring in (28). However, one can easily
check the absence ofκ in (29) by performing a simple linear transformation in the CS fields.
To this end, we replace the fieldsa andb with the fieldsA1 andA2 putting in equation (45)

a− b = A1 a + b = A2. (47)

After some calculations, the action (46) becomes, in terms ofAτ ,

A(A1,A2, {9}) = i

16π

∫
d3x εµνρ(kA1

µ)∂νA
2
ρ

+1
6a‖

(
∇ + i

(kA1)

4π

)
91‖2 + 1

6a‖
(∇ + iγ2A

2
)
92‖2

+
2∑
τ=1

zτ‖9τ‖2 +
2∑

τ,τ ′=1

‖9τ‖2 v0
ττ ′ ‖9τ ′ ‖2. (48)

As it is possible to see, in the new action (48) the parameterκ appears as a factor multiplying
the fieldA1 and can thus be eliminated by a rescaling of these fields.

The configuration probability (45) is given in the space of the chemical potentialsλ andzτ
conjugated to the topological numberm and the contour lengthsLτ . It is also possible to find
an expression of the above configurational probability in the space of the topological number
m by taking the inverse Fourier transformation of the Green function (45)

Gm({r}, {r0}, {z}) =
∫

dλ

2π
e−iλm〈Gλ({r}, {r0}, {z}|{φ}, {A})〉{φ},a,b. (49)

To this end, we split the action (46) into three parts

A(a, b, {9}) = A0({A}, {9}) + λ
∫

d3r i2(r) ·A2(r) + 1
6aλ

2
∫

1
16d3rA2 ·A2‖92(r)‖2

(50)

whereA0({A}, {ψω}) is the contribution to the actionA(a, b, {ψω})which does not containλ:

A0({A}, {9}) = iACS(a, κ) + iACS(b,−κ) + 1
6a‖D191‖2 + 1

6a‖∇92‖2

+
2∑
τ=1

zτ‖9τ‖2 +
2∑

τ,τ ′=1

‖9τ‖2v0
ττ ′ ‖9τ ′ ‖2 (51)

and

i2(r) = a

12

1

2i

(
9∗2∇92 −92∇9∗2

) = a

12

1

2i

n∑
ω=1

(ψ∗ω2 ∇ψω
2 − ψ2∇ψ∗ω2 ). (52)

Performing the Gauss integral in (49) and neglecting irrelevant constant factors, we have

Gm({r}, {r0}; {z}) = lim
n→0

∫
DaDb

2∏
τ=1

[ n∏
ω=1

Dψ∗ωτ Dψω
τ ψ

∗ω
τ (rτ )ψ

ω
τ (r0,τ )

]
× exp

{−A0({A}, {ψω})}
× exp

{
− 1

4K
−1

(
m− i

2∑
τ=1

∫
d3r i2(r) ·A2(r)

)2}
K−1/2 (53)

where

K = 1
6a

∫
1
16d3rA2 ·A2‖92‖2. (54)
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4. Conclusions

In this paper a CS-based model of polymers subjected to topological constraints has been
derived and applied to the description of two entangling polymersP1 andP2. The final result
is summarized by the Green function of equation (53). In the space of the chemical potentialλ

conjugated to the topological numberm, the model consists in a generalization of a topological
Ginzburg–Landau model in itsn-component version (equations (45) and (46)). Similar theories
in which the Lagrangian of Ginzburg–Landau is coupled to a single Abelian gauge field theory,
have been considered in connection with superconductivity and liquid crystals [17].

As we have seen in section 3, the introduction of auxiliary CS fields has completely
decoupled the actions of the two entangling polymersP1 andP2. In the original formulation
of equation (34), in fact, the two polymers were coupled in a non-trivial way due to the
reciprocal topological interactions introduced by the Gauss linking invariant. In equation (29),
instead, each polymerPτ , with τ = 1, 2, interacts only with the auxiliary fieldsAτ , φτ and
its action is formally that of a particle moving in the background of the ‘electromagnetic’
field (Aτ , iφτ ). In our approach the Chern–Simons fields acquire the nice physical role of
carriers of the topological interactions that constrain the polymer system to remain in a given
topological state. In particular, it would be tempting to identify the CS fields as propagators
of the collective modes which are relevant in the topological entanglements of polymers. A
set of these collective models has been derived in [3].

On the other hand, the complications introduced in our formalism by the fact that both
polymers are non-static, are minimal. To show this, we have generalized all the polymer
configurational probabilities derived in [7] to the case of two fluctuating polymers. One can
for instance see that, apart from the coupling with the quantum CS fieldsa andb, which
replace the external magnetic fieldB and eliminate the somewhat artificial dependence on the
configurations of the static polymers, the Green function in equation (45) differs from that of
equation (16) only by the presence of two sets of replica fields instead of one.

Of course, the inclusion of CS fields in the treatment of polymers also opens the possibility
of taking into account more sophisticated topological invariants than the Gauss linking number,
but this extension is not straightforward and requires some care. For instance, after replacing the
fieldsa andbwith their non-Abelian counterparts, one can obtain higher-order knot invariants
from the radiative corrections of equation (28) as shown in [18]. However, in the non-Abelian
case the elimination of the undesired Gauss self-linking terms occurring in equation (28) is
valid only at the first-order approximation with respect to the CS coupling constantκ and
remains a problem at higher orders. A possible solution to this difficulty is the introduction of
a suitableframingsuch that

χframed(C,C) = 0. (55)

Unfortunately, as briefly mentioned in the introduction, aframing, like that in equation (55),
is necessarily, depending on the form of the loopC which, in turn, is a dynamical variable
in the present context. Thus, the choice offramingwould terribly complicate the form of the
Schr̈odinger equation (39), preventing its solution in terms of second quantized fields.

In conclusion, we hope that it will be possible to extend the present approach to the situation
in which there is an arbitrary number of polymers. We also note that in the configurational
probability (53) the effects of self-entanglements of the loops have not been taken into account.
However, these effects turn out to have relevant consequences in the statistics of the polymers
and can be expressed in terms of Chern–Simons amplitudes as shown in [4]. The incorporation
of self-entanglement within our approach is currently a problem under study. Finally, we
remark that our results could also be applied to other physical systems such as vortex rings
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and dislocation lines embedded in a solid, in which topological constraints among entangled
one-dimensional excitations in a continuum play essential roles.
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